This exam consists of three problems, worth a total of 40 points.
Problem 1 has one part, and is worth 15 points.
Problem 2 has three parts, and is worth 15 points.
Problem 3 has one part, and is worth 10 points.

Below are a few preliminaries and definitions that you may find useful for the exam.

- For an N-point discrete-time sequence $x[n]$ with $x[n]=0$ for $n<0$ and $n>N-1$, we denote its N-point discrete Fourier Transform (DFT) by $X[k]$, where $X[k]=0$ for $k<0$ and $k>N-1$. The analysis and synthesis equations are:

$$
\begin{array}{ll}
\text { Analysis equation: } X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{k n} & 0 \leq k \leq N-1, \\
\text { Synthesis equation: } x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{-k n} & 0 \leq n \leq N-1,
\end{array}
$$

where $W_{N} \triangleq e^{-j(2 \pi / N)}$.

- For a general discrete time sequence $x[n]$, we denote its discrete-time Fourier Transform (DTFT), when it exists, by $X\left(e^{j \omega}\right)$. The analysis and synthesis equations are:

$$
\begin{aligned}
\text { Analysis equation: } X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
\text { Synthesis equation: } x[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega .
\end{aligned}
$$

Similarly, the z-transform of a discrete-time signal $x[n]$ is given by $X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$.

PhD Preliminary Written Exam Fall 2014

Problem \#3
Page 2 of 4 Signal Processing

1) [15 points] Let $X\left(e^{j \omega}\right)$ be the discrete time Fourier Transform (DTFT) of the discrete-time signal $x[n]=(1 / 2)^{n} u[n]$. Find a length- 5 sequence $g[n]$ whose five-point discrete Fourier transform (DFT) $G[k]$ is identical to the samples of the DTFT of $x[n]$ at $\omega_{k}=2 \pi k / 5$, i.e.,

$$
g[n]=0 \quad \text { for } \quad n<0, n>4
$$

and

$$
G[k]=X\left(e^{j 2 \pi k / 5}\right) \quad \text { for } \quad k=0,1, \ldots, 4 .
$$

2) [15 points total, 3 parts] In the figure below, $H(z)$ is the system function of a causal linear time invariant (LTI) system.

a) [5 points] Using z-transforms of the signals shown in the figure, obtain an expression for $W(z)$ in the form

$$
W(z)=H_{1}(z) X(z)+H_{2}(z) E(z)
$$

where both $H_{1}(z)$ and $H_{2}(z)$ are expressed in terms of $H(z)$.
b) [5 points] For the special case $H(z)=z^{-1} /\left(1-z^{-1}\right)$, determine $H_{1}(z)$ and $H_{2}(z)$.
c) [5 points] Is the system $H(z)$ stable? Are the systems $H_{1}(z)$ and $H_{2}(z)$ stable?
3) [10 points] Suppose $x[n]$ is a finite-duration discrete-time signal that is known to be zero for all $n<0$.

Show that if $x[n]$ is also binary-valued (i.e., its nonzero components can only take the value 1) it can be recovered exactly from its z-transform evaluated at the single point $z=1 / 2$. That is, provide a simple strategy for recovering causal, binary-valued signals $x[n]$ from $\left.X(z)\right|_{z=1 / 2}$.

